Вспомогательные материалы

Вспомогательные материалы:

1.6. Термодинамические функции реальных газов

Уравнения состояния, представляя самостоятельный интерес, дают возможность также рассчитывать термодинамические функции реальных систем (не только газов, но и жидкостей, если имеется уравнение, описывающее всю область состояний от газа до жидкости).

При нахождении производных термодинамических функций по объему при T = const удобно исходить из соотношений, связывающих рассматриваемую функцию с энергией Гельмгольца F, т.к. она характеристична относительно переменных T и V. Для мольных величин запишем:

;

;

; (1.26)

и т.д.

Производные по давлению при T = const найдем с учетом того, что характеристической функцией относительно переменных T и p является энергия Гиббса G:

Таблица 1.4. Некоторые уравнения состояния реальных газов

Уравнение

Обычная форма

Приведенная форма

pc

Tc

Vc

Zc

Ван-дер-Ваальса (1873)

3b

Дитеричи (1898)

2b

Бертло (1900)

3b

Битти-Бриджмена (1927)

,
где , ,

         
Вириальное (1901) (Камерлинг-Оннес)

         

;

;

; (1.27)

, и т.д.

В правой части выражений (1.26) и (1.27) стоят переменные T, p и V и производные, которые могут быть выражены через эти переменные с помощью уравнения состояния. Поэтому изменение некоторой функции A (где A = F, G, U, H, S и др.) может быть найдено с помощью соотношений:

; ; (1.28)

; ; (1.29)

При T = const только одна переменная (p или V) является независимой. В выражении (1.28) это переменная V, т.е. p = f(V). В выражении (1.29) это переменная p, т.е. V = g(p). Интегралы (1.28) и (1.29) можно рассчитать, если известна связь между переменными p и V при T = const, т.е. если известно уравнение состояния.

Для идеального газа из уравнения состояния pV = RT находим:

; .

Зависимости термодинамических функций идеального газа от объема выражаются следующими соотношениями:

; (1.30)

; (1.31)

; ; . (1.32)

Зависимости от давления имеют вид:

; (1.33)

; (1.34)

; ; . (1.35)

За стандартное при произвольной температуре принимается состояние идеального газа при той же температуре и стандартном давлении po = 1 бар. Объем идеального газа в стандартных условиях Vo = RT/po . Стандартное значение некоторой функции A можно записать в виде: Ao = A(T, po ) = A(T, Vo ). Разность между мольными значениями термодинамических функций идеального газа в рассматриваемом и стандартном состоянии представляется как:

;

; (1.36)

;

;

Рассмотрим термодинамические функции реальных газов, отсчитываемые от стандартного состояния. Вывод основан на том, что при p 0 (V Ґ ) реальный газ ведет себя как идеальный. Можно исходить из соотношений (1.28) или (1.29). Соотношения (1.29) удобнее использовать тогда, когда уравнение состояния дает зависимость p(V, T) в явном виде (как, например, уравнение Ван-дер-Ваальса).

Рассмотрим выражение для энергии Гельмгольца F. Изменение F при изотермическом изменении объема реального газа будет:

.

Для гипотетического идеального газа, образованного теми же частицами, но невзаимодействующими:

.

При V1 Ґ , F(T, V1) Fид(T, V1). Опуская индекс при V2, запишем:

. (1.37)

С учетом (1.36) найдем разность между значениями F в рассматриваемом и стандартном состоянии:

. (1.38)

Тогда для энтропии реального газа получаем:

. (1.39)

Внутренняя энергия реального газа равна:

. (1.40)

Для энтальпии получаем:

, (1.41)

где Z = pV/RT - фактор сжимаемости.

Аналогично для энергии Гиббса можно записать:

;

.

При p1 0, G(T, p1) Gид(T, p1). Опуская индекс при p2, получим:

. (1.42)

Раскрыв зависимость Gид(T, p), получим:

. (1.43)

Энтропия реального газа как функция давления имеет вид:

. (1.44)

Аналогичным образом можно получить выражения и для других термодинамических функций.